Answer:
h = 47 m
Explanation:
First, we will calculate the force on the cord due to the weight:
[tex]Force = F = Weight\\F = mg\\F = (79\ kg)(9.81\ m/s^2)\\F = 775\ N[/tex]
Now, we will calculate the elongation by using Hooke's Law:
[tex]F = k \Delta x[/tex]
where,
k = spring constant = 43 N/m
Δx = elongation = ?
Therefore,
[tex]775\ N = (43\ N/m)\Delta x\\\\\Delta x = \frac{775\ N}{43\ N/m}\\\\\Delta x = 18\ m\\[/tex]
So, the final length of the cord will be:
[tex]Final\ Length = Initial\ Length + \Delta x\\Final\ Length = 35\ m + 18\ m\\Final\ Length = 53\ m\\[/tex]
Hence, the height from water (h) can be found using the following formula:
[tex]h = Height\ of\ Bridge - Final\ Length\ of\ cord\\h = 100\ m - 53\ m\\[/tex]
h = 47 m