Answer:
[tex]b_n = \frac{2}{27} (9^n)[/tex]
Step-by-step explanation:
Given
[tex]a_1=\frac{2}{3},\ a_n=3a_{n-1}.[/tex]
Required
An explicit rule for [tex]b_1,\ b_2,\ b_3,\ \dots[/tex]
Where [tex]b_1=a_1,\ b_2=a_3,\ b_3=a_5,\ \dots[/tex]
We have:
[tex]a_1=\frac{2}{3},\ a_n=3a_{n-1}.[/tex]
Calculate a2
[tex]a_2 = 3a_{2-1}[/tex]
[tex]a_2 = 3a_1[/tex]
[tex]a_2 = 3 * \frac{2}{3}[/tex]
[tex]a_2 = 2[/tex]
Calculate a3
[tex]a_3 = 3a_{3-1}[/tex]
[tex]a_3 = 3a_2[/tex]
[tex]a_3 = 3 *2[/tex]
[tex]a_3 = 6[/tex]
Calculate a4
[tex]a_4 = 3a_{4-1}[/tex]
[tex]a_4 = 3a_3[/tex]
[tex]a_4 = 3*6[/tex]
[tex]a_4 = 18[/tex]
Calculate a5
[tex]a_5 = 3a_{5-1}[/tex]
[tex]a_5 = 3a_4[/tex]
[tex]a_5 = 3*18[/tex]
[tex]a_5 = 54[/tex]
So:
[tex]b_1=a_1,\ b_2=a_3,\ b_3=a_5,\ \dots[/tex]
[tex]a_1=\frac{2}{3}[/tex] [tex]a_3 = 6[/tex] [tex]a_5 = 54[/tex]
The above sequence form a geometric sequence.
Calculate common ratio (r)
[tex]r = \frac{b_3}{b_2}[/tex]
[tex]r = \frac{a_5}{a_3}[/tex]
[tex]r = \frac{54}{6}[/tex]
[tex]r = 9[/tex]
So, the explicit formula is:
[tex]b_n = b_1 * r^{n-1[/tex]
[tex]b_1=a_1[/tex], so:
[tex]b_n = a_1 * r^{n-1[/tex]
[tex]a_1=\frac{2}{3}[/tex], so:
[tex]b_n = \frac{2}{3} * 9^{n-1[/tex]
Split:
[tex]b_n = \frac{2}{3} * \frac{9^n}{9}[/tex]
[tex]b_n = \frac{2}{3*9} (9^n)[/tex]
[tex]b_n = \frac{2}{27} (9^n)[/tex]
The explicit rule is: [tex]b_n = \frac{2}{27} (9^n)[/tex]