A geometric sequence is given by the recursive rule $a_1=\frac{2}{3},\ a_n=3a_{n-1}$ . Give an explicit rule for the nth term of the sequence $b_1,\ b_2,\ b_3,\ \dots\ ,$ given that $b_1=a_1,\ b_2=a_3,\ b_3=a_5,\ \dots$ .

Respuesta :

Answer:

[tex]b_n = \frac{2}{27} (9^n)[/tex]

Step-by-step explanation:

Given

[tex]a_1=\frac{2}{3},\ a_n=3a_{n-1}.[/tex]

Required

An explicit rule for [tex]b_1,\ b_2,\ b_3,\ \dots[/tex]

Where [tex]b_1=a_1,\ b_2=a_3,\ b_3=a_5,\ \dots[/tex]

We have:

[tex]a_1=\frac{2}{3},\ a_n=3a_{n-1}.[/tex]

Calculate a2

[tex]a_2 = 3a_{2-1}[/tex]

[tex]a_2 = 3a_1[/tex]

[tex]a_2 = 3 * \frac{2}{3}[/tex]

[tex]a_2 = 2[/tex]

Calculate a3

[tex]a_3 = 3a_{3-1}[/tex]

[tex]a_3 = 3a_2[/tex]

[tex]a_3 = 3 *2[/tex]

[tex]a_3 = 6[/tex]

Calculate a4

[tex]a_4 = 3a_{4-1}[/tex]

[tex]a_4 = 3a_3[/tex]

[tex]a_4 = 3*6[/tex]

[tex]a_4 = 18[/tex]

Calculate a5

[tex]a_5 = 3a_{5-1}[/tex]

[tex]a_5 = 3a_4[/tex]

[tex]a_5 = 3*18[/tex]

[tex]a_5 = 54[/tex]

So:

[tex]b_1=a_1,\ b_2=a_3,\ b_3=a_5,\ \dots[/tex]

[tex]a_1=\frac{2}{3}[/tex]     [tex]a_3 = 6[/tex]     [tex]a_5 = 54[/tex]

The above sequence form a geometric sequence.

Calculate common ratio (r)

[tex]r = \frac{b_3}{b_2}[/tex]

[tex]r = \frac{a_5}{a_3}[/tex]

[tex]r = \frac{54}{6}[/tex]

[tex]r = 9[/tex]

So, the explicit formula is:

[tex]b_n = b_1 * r^{n-1[/tex]

[tex]b_1=a_1[/tex], so:

[tex]b_n = a_1 * r^{n-1[/tex]

[tex]a_1=\frac{2}{3}[/tex], so:

[tex]b_n = \frac{2}{3} * 9^{n-1[/tex]

Split:

[tex]b_n = \frac{2}{3} * \frac{9^n}{9}[/tex]

[tex]b_n = \frac{2}{3*9} (9^n)[/tex]

[tex]b_n = \frac{2}{27} (9^n)[/tex]

The explicit rule is: [tex]b_n = \frac{2}{27} (9^n)[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico