Answer:
The percentage error is 8%
Step-by-step explanation:
Given
[tex]r = 10cm[/tex]
[tex]\triangle r =0.1cm[/tex]
Required
% error in the surface area
The surface area of a sphere is:
[tex]S = \4\pi r^2[/tex]
Differentiate
[tex]dS \approx 8\pi r\ dr[/tex]
Rewrite as:
[tex]\triangle S =8\pi r \triangle r[/tex] --- This represents the relative error
The percentage error is then calculated as:
[tex]\% Error = \frac{Relative\ Error}{Surface\ Area}[/tex]
[tex]\% Error = \frac{\triangle S}{S} * 100\%[/tex]
[tex]\% Error = \frac{8\pi r \triangle r}{\pi r^2} *100\%[/tex]
[tex]\% Error = \frac{8 \triangle r}{r} * 100\%[/tex]
[tex]\% Error = \frac{8 *0.1}{10} * 100\%[/tex]
[tex]\% Error = \frac{0.8}{10} * 100\%[/tex]
[tex]\% Error = 0.08 * 100\%[/tex]
[tex]\% Error = 8\%[/tex]