a sphere of radius 10cm is to be turned out on a lathe. If the radius is made 0.1cm too long, what is the precentage of error made in the surface area of the sphere

Respuesta :

Answer:

The percentage error is 8%

Step-by-step explanation:

Given

[tex]r = 10cm[/tex]

[tex]\triangle r =0.1cm[/tex]

Required

% error in the surface area

The surface area of a sphere is:

[tex]S = \4\pi r^2[/tex]

Differentiate

[tex]dS \approx 8\pi r\ dr[/tex]

Rewrite as:

[tex]\triangle S =8\pi r \triangle r[/tex] --- This represents the relative error

The percentage error is then calculated as:

[tex]\% Error = \frac{Relative\ Error}{Surface\ Area}[/tex]

[tex]\% Error = \frac{\triangle S}{S} * 100\%[/tex]

[tex]\% Error = \frac{8\pi r \triangle r}{\pi r^2} *100\%[/tex]

[tex]\% Error = \frac{8 \triangle r}{r} * 100\%[/tex]

[tex]\% Error = \frac{8 *0.1}{10} * 100\%[/tex]

[tex]\% Error = \frac{0.8}{10} * 100\%[/tex]

[tex]\% Error = 0.08 * 100\%[/tex]

[tex]\% Error = 8\%[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico