Answer:
66.98 km
Explanation:
Given :
Initial time period, [tex]$T_1$[/tex] = 1 day
Radius of initial orbit, [tex]$r_1$[/tex] = 42.2 km
Final Time period, [tex]$T_2$[/tex] = 2 days
We know that,
The time period of satellite is
[tex]$T= 2 \pi \sqrt{\frac{r^3}{GM}}$[/tex]
So, for [tex]$T_2=2\pi \sqrt{\frac{r_2^3}{GM}}$[/tex] ...........(i)
For [tex]$T_1=2\pi \sqrt{\frac{r_1^3}{GM}}$[/tex] ...................(ii)
Therefore, dividing equation (i) by (ii), we get
[tex]$\frac{T_2}{T_1}=\sqrt{\frac{r_2^3}{r_1^3}}$[/tex]
[tex]$\left(\frac{2}{1}\right)^2=\frac{r_2^3}{(42.2)^3}$[/tex]
[tex]$r_2 = 66.98 \ km$[/tex]
Therefore, the radius is 66.98 km.