Solution :
Apply ideal gas equation, PV=nRT to find the number of moles.
The number of moles of a gas is
[tex]$n=\frac{P_1V_1}{RT_1}$[/tex]
[tex]$n=\frac{(11.013 \times 10^5\ Pa)(1.50 \times 10^{-3}\ m^3)}{(8.134 \ J/Mole.K)(300 \ K)}$[/tex]
n = 0.66 mole
The initial mass of the ethane in the flask is
m = 0.66 mole x 30.1 g/mole
= 19.866 g
The volume and the number of moles remains constant after the stopcock is closed.
The final pressure of the ethane is
[tex]$p_2=\frac{T_2}{T_1}p_1$[/tex]
[tex]$=\frac{300}{550} \times 11.013 \times 10^5$[/tex]
= [tex]$60.0709 \times 10^4 \ Pa$[/tex]