Answer:
The length of the resulting segment is 500.
Step-by-step explanation:
Vectorially speaking, the dilation is defined by following operation:
[tex]P'(x,y) = O(x,y) + k\cdot [P(x,y)-O(x,y)][/tex] (1)
Where:
[tex]O(x,y)[/tex] - Center of dilation.
[tex]P(x,y)[/tex] - Original point.
[tex]k[/tex] - Scale factor.
[tex]P'(x,y)[/tex] - Dilated point.
First, we proceed to determine the coordinates of the dilated segment:
([tex]P(x,y) = (10, 40)[/tex], [tex]Q(x,y) = (70, 120)[/tex], [tex]O(x,y) = (0,0)[/tex], [tex]k = 5[/tex])
[tex]P'(x,y) = O(x,y) + k\cdot [P(x,y)-O(x,y)][/tex]
[tex]P(x,y) = (0,0) +5\cdot [(10,40)-(0,0)][/tex]
[tex]P'(x,y) = (50,200)[/tex]
[tex]Q'(x,y) = O(x,y) + k\cdot [Q(x,y)-O(x,y)][/tex]
[tex]Q' (x,y) = (0,0) +5\cdot [(70,120)-(0,0)][/tex]
[tex]Q'(x,y) = (350, 600)[/tex]
Then, the length of the resulting segment is determined by following Pythagorean identity:
[tex]l_{P'Q'} = \sqrt{(350-50)^{2}+(600-200)^{2}}[/tex]
[tex]l_{P'Q'} = 500[/tex]
The length of the resulting segment is 500.