Respuesta :
Solution :
a). [tex]$P(0)$[/tex] is true
Then ,[tex]$P(0+2)=P(2)$[/tex] is true.
[tex]$P(2+2)=P(4)$[/tex] is true
[tex]$P(4+2)=P(6)$[/tex] is true.
Therefore, we see that [tex]$P(n)$[/tex] is true for all the even integers : [tex]$\{0, 2,4,6,...\}$[/tex]
b). [tex]$P(0)$[/tex] is true
Then ,[tex]$P(0+3)=P(3)$[/tex] is true.
[tex]$P(3+3)=P(6)$[/tex] is true
[tex]$P(6+3)=P(9)$[/tex] is true.
Therefore, we see that [tex]$P(n)$[/tex] is true for all the multiples of 3 : [tex]$\{0, 3,6,9,12,...\}$[/tex]
c). [tex]$P(0)$[/tex] and [tex]$P(1)$[/tex] is true, then [tex]$P(0+2)=P(2)$[/tex] is true
[tex]$P(1)$[/tex] and [tex]$P(2)$[/tex] is true, then [tex]$P(1+2)=P(3)$[/tex] is true.
[tex]$P(2)$[/tex] and [tex]$P(3)$[/tex] is true, then [tex]$P(2+2)=P(4)$[/tex] is true.
So, we observe that [tex]$P(n)$[/tex] is true for all the non- negative integers : [tex]$\{0, 1,2,3,4,5,6,...\}$[/tex].
d). [tex]$P(0)$[/tex] is true,
So, [tex]$P(0+2)$[/tex] and [tex]$P(0+3)$[/tex] is true or [tex]$P(2)$[/tex] and [tex]$P(3)$[/tex] is true.
Now, [tex]$P(2)$[/tex] is true.
Again, [tex]$P(2+2)$[/tex] and [tex]$P(2+3)$[/tex] is true or [tex]$P(4)$[/tex] and [tex]$P(5)$[/tex] is true.
Now, [tex]$P(3)$[/tex] is true.
Again, [tex]$P(3+2)$[/tex] and [tex]$P(3+3)$[/tex] is true or [tex]$P(5)$[/tex] and [tex]$P(6)$[/tex] is true.
Thus,
[tex]$P(n)$[/tex] is true for all the non- negative integers except 1 : [tex]$\{0, 2,3,4,5,6,...\}$[/tex].
Otras preguntas
