Suppose that P(n) is a propositional function. Determine for which nonnegative integers n the statement P(n) must be true if a) P(0) is true; for all nonnegative integers n, if P(n) is true, then P(n 2) is true. b) P(0) is true; for all nonnegative integers n, if P(n) is true, then P(n 3) is true. c) P(0) and P(1) are true; for all nonnegative integers n, if P(n) and P(n 1) are true, then P(n 2) is true. d) P(0) is true; for all nonnegative integers n, if P(n) is true, then P(n 2) and P(n 3) are true

Respuesta :

Solution :

a). [tex]$P(0)$[/tex] is true

Then ,[tex]$P(0+2)=P(2)$[/tex] is true.

         [tex]$P(2+2)=P(4)$[/tex] is true

          [tex]$P(4+2)=P(6)$[/tex] is true.

Therefore, we see that [tex]$P(n)$[/tex] is true for all the even integers : [tex]$\{0, 2,4,6,...\}$[/tex]

b). [tex]$P(0)$[/tex] is true

Then ,[tex]$P(0+3)=P(3)$[/tex] is true.

         [tex]$P(3+3)=P(6)$[/tex] is true

          [tex]$P(6+3)=P(9)$[/tex] is true.

Therefore, we see that [tex]$P(n)$[/tex] is true for all the multiples of 3 : [tex]$\{0, 3,6,9,12,...\}$[/tex]

c). [tex]$P(0)$[/tex] and [tex]$P(1)$[/tex] is true, then [tex]$P(0+2)=P(2)$[/tex] is true

[tex]$P(1)$[/tex] and [tex]$P(2)$[/tex] is true, then [tex]$P(1+2)=P(3)$[/tex] is true.

[tex]$P(2)$[/tex] and [tex]$P(3)$[/tex] is true, then [tex]$P(2+2)=P(4)$[/tex] is true.

So, we observe that  [tex]$P(n)$[/tex] is true for all the non- negative integers : [tex]$\{0, 1,2,3,4,5,6,...\}$[/tex].

d). [tex]$P(0)$[/tex] is true,

   So, [tex]$P(0+2)$[/tex] and [tex]$P(0+3)$[/tex] is true or [tex]$P(2)$[/tex] and [tex]$P(3)$[/tex] is true.

   Now,   [tex]$P(2)$[/tex] is true.

Again, [tex]$P(2+2)$[/tex] and [tex]$P(2+3)$[/tex] is true or [tex]$P(4)$[/tex] and [tex]$P(5)$[/tex] is true.

   Now, [tex]$P(3)$[/tex] is true.

Again, [tex]$P(3+2)$[/tex] and [tex]$P(3+3)$[/tex] is true or [tex]$P(5)$[/tex] and [tex]$P(6)$[/tex] is true.

Thus,

[tex]$P(n)$[/tex] is true for all the non- negative integers except 1 : [tex]$\{0, 2,3,4,5,6,...\}$[/tex].

RELAXING NOICE
Relax