Respuesta :
Answer:
The least possible height of the flagpole is 227.33 inches and the greatest possible height is 248 inches
Step-by-step explanation:
Given
See attachment for the system
Required
Determine the least and greatest heights of the flagpole
From the question, we have:
[tex]AB = 7\ to\ 7\frac{1}{2} ft[/tex]
[tex]BE =62in[/tex]
[tex]BC = 20\ to\ 21ft[/tex]
Convert AB and BC to feet (multiply by 12)
[tex]AB = 84in\ to\ 90in[/tex]
[tex]BC = 240in\ to\ 252in[/tex]
The height of the flagpole is represented as: CD
To calculate CD, we make use of the following equivalent ratios:
[tex]CD : AC = BE : AB[/tex]
Express as fraction
[tex]\frac{CD }{ AC } = \frac{BE }{ AB}[/tex]
Make CD the subject
[tex]CD = \frac{BE }{ AB} * AC[/tex]
From the attachment:
[tex]AC = AB + BC[/tex]
Where:
[tex]AB = 84in\ to\ 90in[/tex]
[tex]BC = 240in\ to\ 252in[/tex]
The possible values of AC are:
[tex]AC = 84 + 240 =324in[/tex]
[tex]AC = 84 + 252 =336in[/tex]
[tex]BC = 90 + 240 = 330in[/tex]
[tex]AC = 90 + 252 =342in[/tex]
So:
[tex]CD = \frac{BE }{ AB} * AC[/tex]
[tex]BE =62in[/tex]
When AC = 324 ; AB = 84
[tex]CD = \frac{62}{84} * 324[/tex]
[tex]CD = \frac{62* 324}{84}[/tex]
[tex]CD = \frac{20088}{84}[/tex]
[tex]CD = 239.14in[/tex]
When AC = 336 ; AB = 84
[tex]CD = \frac{62}{84} * 336[/tex]
[tex]CD = \frac{62* 336}{84}[/tex]
[tex]CD = \frac{20832}{84}[/tex]
[tex]CD = 248in[/tex]
When AC = 330 ; AB = 90
[tex]CD = \frac{62}{90} * 330[/tex]
[tex]CD = \frac{62 * 330}{90}[/tex]
[tex]CD = \frac{20460}{90}[/tex]
[tex]CD = 227.33in[/tex]
When AC = 342 ; AB = 90
[tex]CD = \frac{62}{90} * 342[/tex]
[tex]CD = \frac{62* 342}{90}[/tex]
[tex]CD = \frac{21204}{90}[/tex]
[tex]CD = 235.6in[/tex]
So, we have:
[tex]CD = 239.14in[/tex]
[tex]CD = 248in[/tex]
[tex]CD = 227.33in[/tex]
[tex]CD = 235.6in[/tex]
The least possible height of the flagpole is 227.33 inches and the greatest possible height is 248 inches

The given range of the length of the shadow and distance of the student
from the tree of between 7 and [tex]7\frac{1}{2}[/tex] feet and 21 and 22 feet gives;
The greatest possible height of the flagpole in feet ≈ 21.8 feet
The least possible height of the flagpole in feet = 19.3 feet
How can the height of the tree be calculated?
Height of the student = 62 inches = [tex]5\frac{1}{6}[/tex] feet
Distance of the flagpole to the student = 21 to 22 feet = 252 to 264 inches
Length of the student's shadow = Between 7 and [tex]\mathbf{7\frac{1}{2}}[/tex] feet = Between 84 and 90 inches
Required:
The least and greatest height of the flagpole.
Solution;
By using similar triangles formed by the student and the flagpole, we
have;
[tex]\dfrac{Height \ of \ the \ student}{Length\ of \ the \ student's \ shadow} = \mathbf{\dfrac{Height \ of \ the \ flagpole}{Length\ of \ the \ flagpole's \ shadow}}[/tex]
Which gives;
[tex]\dfrac{62}{84 \ or \ 90} =\mathbf{ \dfrac{h}{252+(84 \ or \ 90) \ or \ 264 + (84 \ or \ 90)}}[/tex]
Based on the method of cross multiplication, h will be the greatest
possible value, when we have, the largest possible value for the
denominator on the right hand side and the least possible value for the
denominator on the left hand side of the equation, and vice versa.
Which gives;
[tex]\dfrac{62}{90} = \mathbf{\dfrac{h_{min}}{252 + 84}}[/tex]
[tex]h_{min} \ in \ feet = \mathbf{\dfrac{\dfrac{62}{90} \times (252 + 84)}{12}} \approx 19.3[/tex]
The least possible height of the flagpole in feet, [tex]h_{min}[/tex] ≈ 19.3 feet
Similarly. we have;
[tex]\dfrac{62}{84} = \mathbf{\dfrac{h_{max}}{264 + 90}}[/tex]
Which gives;
[tex]h_{max} = \dfrac{62}{84} \times (264 + 90) \approx 261.3[/tex]
[tex]h_{max} \ in \ feet \approx \dfrac{261.3}{12} \approx\mathbf{ 21.8}[/tex]
The greatest possible height of the flagpole in feet, [tex]h_{max}[/tex] ≈ 21.8 feet
Learn more about the characteristics of similar triangles here:
https://brainly.com/question/10703692