Respuesta :
Answer:
Question 11:
[tex]\angle DAC = 53^\circ[/tex]
[tex]\angle AED = 90^\circ[/tex]
[tex]\angle ADC = 74[/tex]
[tex]DB = 16[/tex]
[tex]AE = 6.03[/tex]
[tex]AC = 12.06[/tex]
Question 12:
[tex]\triangle ABD[/tex], [tex]\triangle BAC[/tex], [tex]\triangle CDA[/tex] and [tex]\triangle DAB[/tex]
Question 13:
AC and BD are perpendicular lines, and they are diagonals
Step-by-step explanation:
Question 11
Given
[tex]\angle BAC = 53^\circ[/tex]
[tex]DE = 8[/tex]
See attachment for Rhombus
Required
Determine the indicated sides
Solving (a): [tex]\angle DAC[/tex]
Diagonal CA divides [tex]\angle DAB[/tex] into 2 equal angles
i.e
[tex]\angle DAC = \angle BAC[/tex]
So:
[tex]\angle DAC = 53^\circ[/tex]
Solving (b): [tex]\angle AED[/tex]
The angles at E is 90 degrees because diagonals AC and BD meet at a perpendicular.
So:
[tex]\angle AED = 90^\circ[/tex]
Solving (c): [tex]\angle ADC[/tex]
First, we calculate [tex]\angle ADE[/tex], considering [tex]\triangle ADE[/tex]:
[tex]\angle ADE + \angle AED + \angle DAC = 180[/tex]
[tex]\angle ADE + 90 + 53 = 180[/tex]
[tex]\angle ADE + 143 = 180[/tex]
[tex]\angle ADE = -143 + 180[/tex]
[tex]\angle ADE = 37[/tex]
To calculate [tex]\angle ADC[/tex], we have:
[tex]\angle ADC = 2*\angle ADE[/tex]
[tex]\angle ADC = 2* 37[/tex]
[tex]\angle ADC = 74[/tex]
Solving (d): [tex]DB[/tex]
From the rhombus
[tex]DB = DE +EB[/tex]
Where
[tex]DE =EB[/tex]
So:
[tex]DB = 8 + 8[/tex]
[tex]DB = 16[/tex]
Solving (e): [tex]AE[/tex]
To do this we consider [tex]\triangle ADE[/tex]
Using the tan formula
[tex]tan(\angle ADE) = \frac{AE}{DE}[/tex]
[tex]\angle ADE = 37[/tex] and [tex]DE = 8[/tex]
So:
[tex]\tan(37) = \frac{AE}{8}[/tex]
[tex]AE = 8 * \tan(37)[/tex]
[tex]AE = 6.03[/tex]
Solving (f): [tex]AC[/tex]
This is calculated as:
[tex]AC = AE + EC[/tex]
Where
[tex]AE = EC[/tex]
[tex]AC = 6.03 +6.03[/tex]
[tex]AC = 12.06[/tex]
Question 12: Isosceles Triangle
In the rhombus, all 4 sides are equal;
So, the isosceles triangle are:
[tex]\triangle ABD[/tex], [tex]\triangle BAC[/tex], [tex]\triangle CDA[/tex] and [tex]\triangle DAB[/tex]
Question 13:
AC and BD are perpendicular lines, and they are diagonals

