Respuesta :

Answer:

The largest possible volume of the box is 2000000 cubic meters.

Step-by-step explanation:

The volume ([tex]V[/tex]), in cubic centimeters, and surface area ([tex]A_{s}[/tex]), in square centimeters, of the box with a square base are described below:

[tex]A_{s} = l^{2}+h\cdot l[/tex] (1)

[tex]V = l^{2}\cdot h[/tex] (2)

Where:

[tex]l[/tex] - Side length of the base, in centimeters.

[tex]h[/tex] - Height of the box, in centimeters.

By (2), we clear [tex]h[/tex] within the formula:

[tex]h = \frac{V}{l^{2}}[/tex]

And we apply in (1) and simplify the resulting expression:

[tex]A_{s} = l^{2}+ \frac{V}{l}[/tex]

[tex]A_{s}\cdot l = l^{3}+V[/tex]

[tex]V = A_{s}\cdot l -l^{3}[/tex] (3)

Then, we find the first and second derivatives of this expression:

[tex]V' = A_{s}-3\cdot l^{2}[/tex] (4)

[tex]V'' = -6\cdot l[/tex] (5)

If [tex]V' = 0[/tex] and [tex]A_{s} = 30000\,cm^{2}[/tex], then we find the critical value of the side length of the base is:

[tex]30000-3\cdot l^{2} = 0[/tex]

[tex]3\cdot l^{2} = 30000[/tex]

[tex]l = 100\,cm[/tex]

Then, we evaluate this result in the expression of the second derivative:

[tex]V'' = -600[/tex]

By Second Derivative Test, we conclude that critical value leads to an absolute maximum. The maximum possible volume of the box is:

[tex]V = 30000\cdot l - l^{3}[/tex]

[tex]V = 2000000\,cm^{3}[/tex]

The largest possible volume of the box is 2000000 cubic meters.

ACCESS MORE
EDU ACCESS