Answer:
AC= 14 units
Step-by-step explanation:
Given
[tex]\angle B = 90^\circ[/tex] --- right-angled
[tex]AB = 7[/tex]
[tex]\angle A = 2\angle C[/tex]
Required
Find AC
The question is illustrated using the attached triangle
The angles in a triangle are:
[tex]\angle A + \angle B + \angle C = 180[/tex]
Substitute [tex]\angle B = 90^\circ[/tex] and [tex]\angle A = 2\angle C[/tex]
[tex]2\angle C + 90 + \angle C = 180[/tex]
Collect like terms
[tex]2\angle C + \angle C = 180 - 90[/tex]
[tex]3\angle C = 90[/tex]
[tex]\angle C = 30[/tex]
To find AC, we make use of the sine of angle C:
[tex]\sin C = \frac{AB}{AC}[/tex] --- i.e. opposite/hypotenuse
So:
[tex]\sin 30 = \frac{7}{AC}[/tex]
Make AC the subject
[tex]AC= \frac{7}{\sin 30 }[/tex]
[tex]AC= \frac{7}{0.5}[/tex]
[tex]AC= 14[/tex]