Given the right triangle ABC with right angle B, angle A is twice the size of angle C. If the measure of side AB is 7 units, what is the measure of side AC?

Respuesta :

Answer:

AC= 14 units

Step-by-step explanation:

Given

[tex]\angle B = 90^\circ[/tex] --- right-angled

[tex]AB = 7[/tex]

[tex]\angle A = 2\angle C[/tex]

Required

Find AC

The question is illustrated using the attached triangle

The angles in a triangle are:

[tex]\angle A + \angle B + \angle C = 180[/tex]

Substitute [tex]\angle B = 90^\circ[/tex] and [tex]\angle A = 2\angle C[/tex]

[tex]2\angle C + 90 + \angle C = 180[/tex]

Collect like terms

[tex]2\angle C + \angle C = 180 - 90[/tex]

[tex]3\angle C = 90[/tex]

[tex]\angle C = 30[/tex]

To find AC, we make use of the sine of angle C:

[tex]\sin C = \frac{AB}{AC}[/tex] --- i.e. opposite/hypotenuse

So:

[tex]\sin 30 = \frac{7}{AC}[/tex]

Make AC the subject

[tex]AC= \frac{7}{\sin 30 }[/tex]

[tex]AC= \frac{7}{0.5}[/tex]

[tex]AC= 14[/tex]

Ver imagen MrRoyal
ACCESS MORE
EDU ACCESS