Respuesta :

Given:

The linear parent function is

[tex]f(x)=x[/tex]

To find:

The new function after vertical stretch by a factor of 4 and flip over the x-axis.

Solution:

The transformation is defined as

[tex]g(x)=kf(x)[/tex]                .... (i)

Where, k is either vertical stretch or vertical compression.

If 0<|k|<1, then the graph compressed vertically by factor |k| and if |k|>1, then the graph stretch vertically by factor |k|.

If k<0, then the graph flip over the x-axis.

It is given that the graph of f(x) vertically stretch by a factor of 4. So, |k|=4.

The graph flip over the x-axis. So, the value of k must be negative, i.e., k=4.

Using (i), we get

[tex]g(x)=-4f(x)[/tex]

We have, [tex]f(x)=x[/tex]

[tex]g(x)=-4x[/tex]

Therefore, the correct option is B.

Answer: g(x)= -4x

Step-by-step explanation:

ACCESS MORE
EDU ACCESS