Respuesta :

Question:

Find the point (,) on the curve [tex]y = \sqrt x[/tex] that is closest to the point (3,0).

[To do this, first find the distance function between (,) and (3,0) and minimize it.]

Answer:

[tex](x,y) = (\frac{5}{2},\frac{\sqrt{10}}{2}})[/tex]

Step-by-step explanation:

[tex]y = \sqrt x[/tex] can be represented as: [tex](x,y)[/tex]

Substitute [tex]\sqrt x[/tex] for [tex]y[/tex]

[tex](x,y) = (x,\sqrt x)[/tex]

So, next:

Calculate the distance between [tex](x,\sqrt x)[/tex] and [tex](3,0)[/tex]

Distance is calculated as:

[tex]d = \sqrt{(x_1-x_2)^2 + (y_1 - y_2)^2}[/tex]

So:

[tex]d = \sqrt{(x-3)^2 + (\sqrt x - 0)^2}[/tex]

[tex]d = \sqrt{(x-3)^2 + (\sqrt x)^2}[/tex]

Evaluate all exponents

[tex]d = \sqrt{x^2 - 6x +9 + x}[/tex]

Rewrite as:

[tex]d = \sqrt{x^2 + x- 6x +9 }[/tex]

[tex]d = \sqrt{x^2 - 5x +9 }[/tex]

Differentiate using chain rule:

Let

[tex]u = x^2 - 5x +9[/tex]

[tex]\frac{du}{dx} = 2x - 5[/tex]

So:

[tex]d = \sqrt u[/tex]

[tex]d = u^\frac{1}{2}[/tex]

[tex]\frac{dd}{du} = \frac{1}{2}u^{-\frac{1}{2}}[/tex]

Chain Rule:

[tex]d' = \frac{du}{dx} * \frac{dd}{du}[/tex]

[tex]d' = (2x-5) * \frac{1}{2}u^{-\frac{1}{2}}[/tex]

[tex]d' = (2x - 5) * \frac{1}{2u^{\frac{1}{2}}}[/tex]

[tex]d' = \frac{2x - 5}{2\sqrt u}[/tex]

Substitute: [tex]u = x^2 - 5x +9[/tex]

[tex]d' = \frac{2x - 5}{2\sqrt{x^2 - 5x + 9}}[/tex]

Next, is to minimize (by equating d' to 0)

[tex]\frac{2x - 5}{2\sqrt{x^2 - 5x + 9}} = 0[/tex]

Cross Multiply

[tex]2x - 5 = 0[/tex]

Solve for x

[tex]2x =5[/tex]

[tex]x = \frac{5}{2}[/tex]

Substitute [tex]x = \frac{5}{2}[/tex] in [tex]y = \sqrt x[/tex]

[tex]y = \sqrt{\frac{5}{2}}[/tex]

Split

[tex]y = \frac{\sqrt 5}{\sqrt 2}[/tex]

Rationalize

[tex]y = \frac{\sqrt 5}{\sqrt 2} * \frac{\sqrt 2}{\sqrt 2}[/tex]

[tex]y = \frac{\sqrt {10}}{\sqrt 4}[/tex]

[tex]y = \frac{\sqrt {10}}{2}[/tex]

Hence:

[tex](x,y) = (\frac{5}{2},\frac{\sqrt{10}}{2}})[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico