Respuesta :

Answer:

k = -15

Step-by-step explanation:

The given question says that,

If one zero of the polynomial [tex]f(x)=15x^2+14x-k[/tex]  is reciprocal of the other. We need to find the value of k.

Let [tex]\alpha[/tex] be one of the zero then 1/[tex]\alpha[/tex] will be another zero of the polynomial.

We now that,

Product of zeroes = c/a

We have, c = -k and a = 15

So,

[tex]\alpha \times \dfrac{1}{\alpha }=\dfrac{-k}{15}\\\\-k=15\\\\k=-15[/tex]

So, the value of k is equal to (-15).

ACCESS MORE
EDU ACCESS
Universidad de Mexico