The Taylor polynomial of degree 100 for the function f about x=3 is given by
\[p(x)= (x-3)^2 - ((x-3)^4)/2! +... + [(-1)^n+1] [(x-3)^n2]/n! +... - ((x-3)^100)/50!]/
What is the value of f^30 (3)?

Respuesta :

By the definition of the Taylor Series, the coefficient of (x - 3)^30 is f^(30)(3) / 30!. 

On the other hand, looking at the given series, it is (-1)^(15+1) / 15! (letting n = 15). 

Hence, f^(30)(3) / 30! = (-1)^(15+1) / 15! 
==> f^(30)(3) = 30!/15!. 

The value of  [tex]f^{30} (3)[/tex] is 15!

The definition of the Taylor Series,

The coefficient of [tex](x - 3)^{30}[/tex] is [tex]f^(30)(3) / 30!.[/tex]

What is the formula of the Taylor series?

[tex]\sum \limits_{n=0}^\infty \frac {{f^{(n)}} (a)}{n!} (x-a)^n[/tex]

n! = factorial of n

a = real or complex number

[tex]{{f^{(n)}} (a)}[/tex]= nth derivative of f evaluated at the point a

From the given series, it is [tex](-1)^(15+1) / 15![/tex](letting n = 15).

Therefore, [tex]f^(30)(3) / 30! = (-1)^(15+1) / 15![/tex]

So we get,

[tex]f^{30}(3) = 30!/15!.[/tex]

Therefore the value of  [tex]f^{30} (3)[/tex] is 15!

To learn more about the Taylor polynomial visit:

https://brainly.com/question/23842376

ACCESS MORE