Respuesta :
from sinB = 5/sqrt41 use trig identity sin^2+cos^2 =1
cosB = sqrt(1 - sinB^2)
cosB = 4/sqrt41
tanB = sinB/cosB = 5/4
tanA = 2/3
substitute these values into above formula
tan(A+B) = 23/2
sin B = 5/√41
cos² B = 1 - (5/√41)²
cos ² B = 1 - 25/41
cos B = √(16/41)
cos B = 4/√41
tan B = (5/√41) : (4/√41) = 5/4
[tex]tan ( A +B ) = \frac{tan A + tan B }{1-tanA*tanB} = \\ = \frac{2/3+5/4}{1-2/3*5/4}= \\ \frac{23/12}{1/6}= \frac{23}{2} [/tex]
cos² B = 1 - (5/√41)²
cos ² B = 1 - 25/41
cos B = √(16/41)
cos B = 4/√41
tan B = (5/√41) : (4/√41) = 5/4
[tex]tan ( A +B ) = \frac{tan A + tan B }{1-tanA*tanB} = \\ = \frac{2/3+5/4}{1-2/3*5/4}= \\ \frac{23/12}{1/6}= \frac{23}{2} [/tex]