Respuesta :
Answer:
Option 2 is correct.
Step-by-step explanation:
Given the coordinates of lines segment (3, 10) and (7, 8). we have to find the mid-point of given line segment.
Mid-point formula states that if [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of end points of line segment then the coordinates of mid-point are
[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
∴ Coordinates of mid-point of line segment joining the points (3, 10) and (7, 8) are
[tex](\frac{3+7}{2},\frac{10+8}{2})=(\frac{10}{2},\frac{18}{2})=(5,9)[/tex]
Hence, option 2 is correct.
Answer:
The midpoint of line segment is (5,9).
Step-by-step explanation:
Given : Line segment whose endpoints are (3, 10) and (7, 8).
To find : Find the midpoint of the line segment .
Solution : We have given that endpoints (3, 10) and (7, 8).
By the midpoint segment formula :
Midpoint :
([tex]\frac{x_{1}+x_{2}}{2}[/tex] , [tex]\frac{y_{1}+y_{2}}{2}[/tex]).
Here, the coordinate of [tex]x_{1}[/tex] = 3 , [tex]x_{2}[/tex] = 7 ,
[tex]y_{1}[/tex] = 10 , [tex]y_{2}[/tex] = 8 ,
Plugging values in formula ,
Midpoint =([tex]\frac{3+7}{2}[/tex] , [tex]\frac{10+8}{2}[/tex]).
Midpoint =([tex]\frac{10}{2}[/tex] , [tex]\frac{18}{2}[/tex]).
Midpoint = (5 , 9).
Therefore, the midpoint of line segment is (5,9).