Respuesta :

Answer:

Option 2 is correct.

Step-by-step explanation:

Given the coordinates of lines segment (3, 10) and (7, 8). we have to find the mid-point of given line segment.

Mid-point formula states that if [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of end points of line segment then the coordinates of mid-point are

[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Coordinates of mid-point of line segment joining the points          (3, 10) and (7, 8) are

[tex](\frac{3+7}{2},\frac{10+8}{2})=(\frac{10}{2},\frac{18}{2})=(5,9)[/tex]

Hence, option 2 is correct.

Answer:

The midpoint of line segment is (5,9).

Step-by-step explanation:

Given : Line segment whose endpoints are (3, 10) and (7, 8).

To find : Find the midpoint of the line segment .

Solution : We have given that endpoints  (3, 10) and (7, 8).

By the midpoint segment formula :

     Midpoint :

([tex]\frac{x_{1}+x_{2}}{2}[/tex] , [tex]\frac{y_{1}+y_{2}}{2}[/tex]).

Here, the coordinate of [tex]x_{1}[/tex] = 3 ,   [tex]x_{2}[/tex] = 7 ,

                                      [tex]y_{1}[/tex] = 10 ,      [tex]y_{2}[/tex] = 8 ,

Plugging values in formula ,

Midpoint =([tex]\frac{3+7}{2}[/tex] , [tex]\frac{10+8}{2}[/tex]).

Midpoint =([tex]\frac{10}{2}[/tex] , [tex]\frac{18}{2}[/tex]).

Midpoint = (5 , 9).

Therefore, the midpoint of line segment is (5,9).

ACCESS MORE