Respuesta :
Answer:
[tex]x=-5\text{ or }x=1[/tex].
Step-by-step explanation:
We have been given a quadratic equation [tex]4(x+2)^2=36[/tex]. We are asked to find the solutions for our given equation.
First of all, we will divide both sides of our given equation by 4 as shown below:
[tex]\frac{4(x+2)^2}{4}=\frac{36}{4}[/tex]
[tex](x+2)^2=9[/tex]
Now, we will take square root of both sides of our equation.
[tex]\sqrt{(x+2)^2}=\pm \sqrt{9}[/tex]
[tex]\sqrt{(x+2)^2}=\pm \sqrt{3^2}[/tex]
Using radical rule [tex]\sqrt[n]{a^n}=a[/tex], we will get:
[tex]x+2=\pm 3[/tex]
Upon subtracting 2 from both sides of our given equation, we will get:
[tex]x+2-2=-2\pm 3[/tex]
[tex]x=-2\pm 3[/tex]
Now, we will write two equivalent equations to our equation as:
[tex]x=-2-3\text{ or }x=-2+3[/tex]
[tex]x=-5\text{ or }x=1[/tex]
Therefore, the solutions for our given quadratic equation are [tex]x=-5\text{ or }x=1[/tex].