Respuesta :

4x + 8 x 2 = 36
4x + 16 = 36
4x = 20 
x = 5

Answer:

[tex]x=-5\text{ or }x=1[/tex].

Step-by-step explanation:

We have been given a quadratic equation [tex]4(x+2)^2=36[/tex]. We are asked to find the solutions for our given equation.

First of all, we will divide both sides of our given equation by 4 as shown below:

[tex]\frac{4(x+2)^2}{4}=\frac{36}{4}[/tex]

[tex](x+2)^2=9[/tex]

Now, we will take square root of both sides of our equation.

[tex]\sqrt{(x+2)^2}=\pm \sqrt{9}[/tex]

[tex]\sqrt{(x+2)^2}=\pm \sqrt{3^2}[/tex]

Using radical rule [tex]\sqrt[n]{a^n}=a[/tex], we will get:

[tex]x+2=\pm 3[/tex]

Upon subtracting 2 from both sides of our given equation, we will get:

[tex]x+2-2=-2\pm 3[/tex]

[tex]x=-2\pm 3[/tex]

Now, we will write two equivalent equations to our equation as:

[tex]x=-2-3\text{ or }x=-2+3[/tex]

[tex]x=-5\text{ or }x=1[/tex]

Therefore, the solutions for our given quadratic equation are [tex]x=-5\text{ or }x=1[/tex].

Otras preguntas

ACCESS MORE