Answer:
[tex]Total = 32.4in^2[/tex]
Step-by-step explanation:
Given
See attachment for triangle
Required
The surface area of the pyramid
To do this, we calculate the surface area of each of the pyramid faces.
For the equilateral triangle.
[tex]Base = 4.5in[/tex]
[tex]Height = 3.9in[/tex]
The area is:
[tex]A_1 = 0.5 * Base * Height[/tex]
[tex]A_1 = 0.5 * 4.5in * 3.9in[/tex]
[tex]A_1 = 8.775in^2[/tex]
There are 3 isosceles triangles of equal dimension.
[tex]Base = 4.5in[/tex]
[tex]Height = 3.5in[/tex]
The area of one of them is:
[tex]A_2 = 0.5 * 4.5in * 3.5in[/tex]
[tex]A_2 = 7.875in^2[/tex]
For the 3, the surface area is:
[tex]3A_2 = 7.875in^2 * 3[/tex]
[tex]3A_2 = 23.625in^2\\[/tex]
The total surface area is:
[tex]Total = 8.775in^2 + 23.625in^2[/tex]
[tex]Total = 32.4in^2[/tex]