Respuesta :

Answer:

[tex] abc = - \frac{16}{3} [/tex]

Step-by-step explanation:

[tex] {x}^{ - 2} {y}^{3} \sqrt[3]{ 64{x}^{5} {y}^{3} } = a {x}^{b} {y}^{c} \\ \\ {x}^{ - 2} {y}^{3} \times 4 \times {x}^{ \frac{5}{3} } \times y= a {x}^{b} {y}^{c} \\ \\ 4 {x}^{ \frac{5}{3} - 2 } {y}^{3 + 1} = a {x}^{b} {y}^{c} \\ \\ 4 {x}^{ \frac{5 - 6}{3} } {y}^{4} = a {x}^{b} {y}^{c} \\ \\ 4 {x}^{ \frac{ - 1}{3} } {y}^{4} = a {x}^{b} {y}^{c} \\ \\ equating \: like \: terms \: on \: both \: sides \\ \\ a = 4 \\ \\ b = - \frac{1}{3} \\ \\ c = 4 \\ \\ abc = 4 \times ( - \frac{1}{3} ) \times 4 \\ \\ = 16 \times ( - \frac{1}{3} ) \\ \\ abc = - \frac{16}{3} [/tex]

RELAXING NOICE
Relax