Respuesta :

Answer:

23.6

Step-by-step explanation:

Hello There!

So they want us to find ∠Z

We are given ∠Zs opposite side length and the length of the hypotenuse

Sine refers to opposite divided by hypotenuse

So we can use sine to solve for ∠Z

[tex]SinZ=\frac{6}{15} \\\frac{6}{15} =.4\\SinZ=.4\\Z=arcsin(.4)\\Z=23.57817848[/tex]

Note: arcsin is the inverse of sin

Other way we could find ∠Z:

We could also use law of sines which states that a side length divided by sin(its opposite angle) is equal to a different side length divided by sin ( its opposite angle)

So specifically for this triangle

[tex]\frac{15}{sin90} =\frac{6}{sinZ}[/tex]

step 1 multiply each side by 6

note : flip the fraction

[tex]\frac{6sin90}{15} =sinZ\\\frac{6sin90}{15}=.4\\.4=sinZ\\arcin(.4)=23.57817848\\Z=23.57817848[/tex]

Then our final step is to give our answer to the first decimal place

so the answer would be 23.6

ACCESS MORE