Given:
The expression is:
[tex]\left(\dfrac{11}{19}n-8\right)+\left(\dfrac{1}{19}n+10\right)=\left(\_\_\_+\dfrac{1}{19}n\right)+\left(-8+\_\_\_\right)[/tex]
[tex]=\_\_\_n+\_\_\_[/tex]
To find:
The missing values.
Solution:
We have,
[tex]\left(\dfrac{11}{19}n-8\right)+\left(\dfrac{1}{19}n+10\right)[/tex]
It can be written as
[tex]\left(\dfrac{11}{19}n-8\right)+\left(\dfrac{1}{19}n+10\right)=\left(\dfrac{11}{19}n+\dfrac{1}{19}n\right)+\left(-8+10\right)[/tex]
So, the values for the first two boxes are [tex]\dfrac{11}{19}n[/tex] and 10 respectively.
On simplification, we get
[tex]\left(\dfrac{11}{19}n-8\right)+\left(\dfrac{1}{19}n+10\right)=\left(\dfrac{11+1}{19}n\right)+\left(2\right)[/tex]
[tex]\left(\dfrac{11}{19}n-8\right)+\left(\dfrac{1}{19}n+10\right)=\dfrac{12}{19}n+2[/tex]
So, the values for third and fourth boxes are [tex]\dfrac{12}{19}[/tex] and 2 respectively.