Find the area of △LKJ.

Answer:
[tex]A=600\: u^{2}[/tex]
The correct answer is letter c.
Step-by-step explanation:
The area equation of a triangle is given by:
[tex]A=\frac{bh}{2}[/tex] (1)
Where:
b is the base
h is the height
Let's find first the angle MJK (α), using the tangent definition.
[tex]tan(\alpha)=\frac{24}{32}[/tex]
[tex]\alpha=tan^{-1}(\frac{24}{32})[/tex]
[tex]\alpha=36.9^{\circ}[/tex]
Now, if α = 37° then β (angle JLK) must be:
[tex]37^{\circ} + \beta + 90^{\circ}=180^{\circ}[/tex]
[tex]\beta=53^{\circ}[/tex]
Now, we can find the distance ML using again the tangent definition:
[tex]tan(\beta)=\frac{24}{ML}[/tex]
[tex]ML=\frac{24}{tan(53)}[/tex]
[tex]ML=18[/tex]
The base of the triangle LKJ will be:
[tex]b=32+ML=32+18=50[/tex]
Therefore, using equation (1) the area of △LKJ will be:
[tex]A=\frac{50*24}{2}[/tex]
[tex]A=600\: u^{2}[/tex]
The correct answer is c.
I hope it helps you!