Respuesta :
Answer:
[tex]m = \frac{5}{7}[/tex]
[tex]m_2 = \frac{5}{21}[/tex]
Step-by-step explanation:
Given
[tex](x_1,y_1) = (7,5)[/tex]
[tex](x_2,y_2) = (21,15)[/tex]
Using the available details, the solution goes thus:
Solving (a): The slope (m) of this line:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
This gives:
[tex]m = \frac{15 - 5}{21 - 7}[/tex]
[tex]m = \frac{10}{14}[/tex]
Simplify:
[tex]m = \frac{5}{7}[/tex]
Solving (b): Another line with 1/3 of the slope.
This is calculated using:
[tex]m_2 = \frac{1}{3} * m[/tex]
[tex]m_2 = \frac{1}{3} * \frac{5}{7}[/tex]
[tex]m_2 = \frac{5}{21}[/tex]