Respuesta :
ax+b>cd
-b -b
-------------
ax>(cd)-b
/a /a
-------------
x=(cd)-b/a
now lets use some numbers
a>4
b>2
c>6
d>1/2
4x+2>6(1/2)
-2 -2
---------------
4x>3-2
4x>1
/4 /4
--------------
x>1/4
remember if you ever need anything or need a question answered you can just message me or post it on my profile
-b -b
-------------
ax>(cd)-b
/a /a
-------------
x=(cd)-b/a
now lets use some numbers
a>4
b>2
c>6
d>1/2
4x+2>6(1/2)
-2 -2
---------------
4x>3-2
4x>1
/4 /4
--------------
x>1/4
remember if you ever need anything or need a question answered you can just message me or post it on my profile
The required solution is [tex]x>\dfrac{cd-b}{a}[/tex].
Given:
The given inequality is [tex]ax+b>cd[/tex].
To find:
The solution to the given inequality.
Explanation:
We have,
[tex]ax+b>cd[/tex]
Subtract [tex]b[/tex] from both sides.
[tex]ax+b-b>cd-b[/tex]
[tex]ax>cd-b[/tex]
Divide both sides by [tex]a[/tex].
[tex]\dfrac{ax}{a}>\dfrac{cd-b}{a}[/tex]
[tex]x>\dfrac{cd-b}{a}[/tex]
Therefore, the required solution is [tex]x>\dfrac{cd-b}{a}[/tex].
Learn more:
https://brainly.com/question/12306534