Respuesta :

ax+b>cd
     -b   -b
-------------
ax>(cd)-b
/a      /a
-------------
x=(cd)-b/a        
                            
now lets use some numbers
a>4
b>2
c>6
d>1/2

4x+2>6(1/2)
    -2     -2
 ---------------
 4x>3-2
 4x>1
 /4    /4
--------------
 x>1/4
 
 remember if you ever need anything or need a question answered you can just message me or post it on my profile      

The required solution is [tex]x>\dfrac{cd-b}{a}[/tex].  

Given:

The given inequality is [tex]ax+b>cd[/tex].

To find:

The solution to the given inequality.

Explanation:

We have,

[tex]ax+b>cd[/tex]

Subtract [tex]b[/tex] from both sides.

[tex]ax+b-b>cd-b[/tex]

[tex]ax>cd-b[/tex]

Divide both sides by [tex]a[/tex].

[tex]\dfrac{ax}{a}>\dfrac{cd-b}{a}[/tex]

[tex]x>\dfrac{cd-b}{a}[/tex]

Therefore, the required solution is [tex]x>\dfrac{cd-b}{a}[/tex].

Learn more:

https://brainly.com/question/12306534

ACCESS MORE