Respuesta :

Answer:

[tex]x=0,\\x=\frac{2\pi}{3},\\x=\pi\\x=2\pi[/tex]

Step-by-step explanation:

Solution 1 (Algebraically):

We're given the following equation to find for all values of [tex]x[/tex] in the restricted domain [tex]0\leq x \leq2\pi[/tex]:

[tex]\sin(2x)=-\sin(x)[/tex]

Subtract [tex]-\sin (x)[/tex] from both sides:

[tex]\sin(2x)+\sin(x)=0[/tex].

Recall the trigonometric identity

[tex]\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)[/tex]. We can rewrite [tex]\sin(2x)[/tex] as [tex]\sin(x+x)[/tex] and use this trigonometric identity to simplify:

[tex]\sin(2x)+\sin(x)=0,\\\\\sin(x+x)+\sin(x)=0,\\\\\sin(x)\cos(x)+\cos(x)\sin(x)+\sin(x)=0,\\\\2\cos(x)\sin(x)+\sin(x)=0,\\\\(2\cos(x)+1)(\sin(x))=0[/tex].

We then have two cases:

[tex]\begin{cases}\sin(x)=0,\\2\cos(x)+1=0\end{cases}[/tex].

Solving, we have:

[tex]\begin{cases}\sin(x)=0,\:x=2\pi n,\:\pi+2\pi n\:\text{for}\: n\in\mathbb{Z}\\2\cos(x)+1=0,\: x=\frac{2\pi}{3}+2\pi n,\:\frac{4\pi}{3}+2\pi n\:\text{for}\: n\in\mathbb{Z}\end{cases}[/tex].

However our domain is restricted to [tex]0\leq x \leq2\pi[/tex]. Therefore, only the following integers work for [tex]n[/tex]:

For [tex]x=2\pi n,\:\pi+2\pi n,\: n\in \mathbb{Z}[/tex], only [tex]n=0, \:n=1[/tex] fit in this domain.

For [tex]x=\frac{2\pi}{3}+2\pi n,\:\frac{4\pi}{3}+2\pi n,\:n\in\mathbb{Z}[/tex], only [tex]n=0[/tex] fit in this domain.

Therefore, are solutions are:

[tex]x=2\pi(0),\:\boxed{x=0},\\x=\frac{2\pi}{3}+2\pi(0),\:\boxed{x=\frac{2\pi}{3}},\\x=\pi+2\pi(0), \:\boxed{x=\pi},\\x=2\pi(1),\:\boxed{x=2\pi}[/tex], where [tex]x[/tex] is in radians. Since the domain is given in radians ([tex]0\leq x \leq2\pi[/tex]), our answers for [tex]x[/tex] should be given in radians.

Solution 2 (Unit Circle):

If you have a unit circle, [tex]\sin \theta[/tex] is equal to the y-coordinate of the corresponding point on the unit circle. From here, you can look for angles to fit the given equation. You'll see that [tex]0^{\circ}, \: 120^{\circ},\:180^{\circ},\: 360^{\circ}[/tex] are the only angles that work for the given domain. Converting to radians, we get:

[tex]x=0^{\circ}\cdot \frac{\pi}{180}=\boxed{0},\\x=120^{\circ}\cdot \frac{\pi}{180}=\boxed{\frac{2\pi}{3}},\\x=180^{\circ}\cdot \frac{\pi}{180}=\boxed{\pi},\\x=360^{\circ}\cdot \frac{\pi}{180}=\boxed{2\pi}[/tex].

ACCESS MORE