Answer:
the answer is the option A
They are similar because Line BR : Line DB is [tex]1:2[/tex] and line KE : Line YK [tex]1:2[/tex]
Step-by-step explanation:
we know that
If the figures are similar
then
the ratio of their corresponding figures are equal
so
[tex]\frac{BR}{KE}=\frac{DB}{YK}[/tex]
Find the distances
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Find the distance BR
substitute the values
[tex]d=\sqrt{(4-6)^{2}+(6-5)^{2}}[/tex]
[tex]d=\sqrt{(-2)^{2}+(1)^{2}}[/tex]
[tex]dBR=\sqrt{5}\ units[/tex]
Find the distance KE
substitute the values
[tex]d=\sqrt{(11-9)^{2}+(10-6)^{2}}[/tex]
[tex]d=\sqrt{(2)^{2}+(4)^{2}}[/tex]
[tex]dKE=2\sqrt{5}\ units[/tex]
Find the distance DB
substitute the values
[tex]d=\sqrt{(6-4)^{2}+(5-1)^{2}}[/tex]
[tex]d=\sqrt{(2)^{2}+(4)^{2}}[/tex]
[tex]dDB=2\sqrt{5}\ units[/tex]
Find the distance YK
substitute the values
[tex]d=\sqrt{(9-1)^{2}+(6-10)^{2}}[/tex]
[tex]d=\sqrt{(8)^{2}+(-4)^{2}}[/tex]
[tex]dYK=4\sqrt{5}\ units[/tex]
substitute
[tex]\frac{BR}{KE}=\frac{DB}{YK}[/tex]
[tex]\frac{\sqrt{5}}{2\sqrt{5}}=\frac{2\sqrt{5}}{4\sqrt{5}}[/tex]
[tex]\frac{1}{2}=\frac{2}{4}[/tex]
[tex]\frac{1}{2}=\frac{1}{2}[/tex] --------> the figures are similar
[tex]\frac{BR}{KE}=\frac{DB}{YK}[/tex]-----> rewrite
[tex]\frac{BR}{DB}=\frac{KE}{YK}[/tex]
substitute the values
[tex]\frac{\sqrt{5}}{2\sqrt{5}}=\frac{2\sqrt{5}}{4\sqrt{5}}[/tex]
simplify
[tex]\frac{1}{2}=\frac{2}{4}[/tex] ------> [tex]\frac{1}{2}=\frac{1}{2}[/tex]