Respuesta :
Answer:
[tex]\huge\boxed{\sf Q = 13.7\ Joules}[/tex]
Explanation:
Given Data:
Mass = m = 96 g = 0.096 kg
[tex]T_1[/tex] = 124 °C
[tex]T_2[/tex] = 158 °C
Change in Temp. = ΔT = 158 - 124 = 34 °C
Specific Heat Constant = c = 4.186 J/g °C
Required:
Specific Heat Capacity = Q = ?
Formula:
Q = mcΔT
Solution:
Q = (0.096)(4.186)(34)
Q = 13.7 Joules
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807
Answer:
[tex]\Large \boxed{\sf 13600 \ J}[/tex]
Explanation:
Use formula
[tex]\displaystyle \sf Heat \ (J)=mass \ (g) \times specific \ heat \ capacity \ (Jg^{-1}\°C^{-1}) \times change \ in \ temperature \ (\°C)[/tex]
Specific heat capacity of water is 4.18 J/(g °C)
Substitute the values in formula and evaluate
[tex]\displaystyle \sf Heat \ (J)=96 \ g \times 4.18 \ Jg^{-1}\°C^{-1} \times (158\°C-124 \°C)[/tex]
[tex]\displaystyle Q=96 \times 4.18 \times (158-124 )=13643.52[/tex]