In kite PQRS, m_OPO = 50° and m_ORO = 70°. Find m2PSR

Answer:
m<PSR = 60°
Step-by-step explanation:
Given:
m<OPQ = 50°
m<ORQ = 70°
Required:
m<PSR
Solution:
m<PQR + m<OPQ + m<ORQ = 180° (Sum of triangle)
m<PQR + 50 + 70 = 180 (Substitution)
m<PQR + 120 = 180
m<PQR = 180 - 120
m<PQR = 60°
One of the properties of a kite states that the angles where the unequal sides meets are congruent to each other. Therefore:
m<PSR = m<PQR
m<PSR = 60° (substitution)