Respuesta :
Answer:
[tex]-2\frac{241}{360} mg /L[/tex]
Step-by-step explanation:
Givens
- The first year, the concentration is [tex]-1 \frac{3}{5} mg/L[/tex].
- The second year, the concentration is [tex]-2\frac{1}{15} mg/L[/tex].
To find the ratio of change, we just have to divide the second concentration with the first one
[tex]-2\frac{1}{15} \div -1\frac{3}{5}=\frac{31}{15} \div \frac{8}{5}=\frac{31}{15} \times \frac{5}{8}=\frac{155}{120}= \frac{31}{24}[/tex]
So, we need to apply this ratio of change to find the concentration for the third year, because the question is asking for the concentration in 2 years
[tex]-2\frac{1}{15} mg/L \times \frac{31}{24} =-\frac{31}{15} mg/L \times \frac{31}{24} =-\frac{961}{360} =-2\frac{241}{360} mg /L[/tex]
Therefore, the concentration is
[tex]-2\frac{241}{360} mg /L[/tex]