Respuesta :

Answer:

[tex]A(n) = 500 * (\frac{9}{10})^{n-1[/tex]

[tex]A(11) = 174.34[/tex]

Step-by-step explanation:

Given

[tex]f(n) = 500[/tex]

[tex]g(n) = (\frac{9}{10})^{n-1[/tex]

Represent the combination of f(n) and g(n) with A(n)

So, we have:

[tex]A(n) = f(n) * g(n)[/tex]

This gives:

[tex]A(n) = 500 * (\frac{9}{10})^{n-1[/tex]

To calculate the 11th term, we make use of n = 11

[tex]A(11) = 500 * (\frac{9}{10})^{11-1[/tex]

[tex]A(11) = 500 * (\frac{9}{10})^{10[/tex]

This gives:

[tex]A(11) = 500 * (0.9)^{10}[/tex]

[tex]A(11) = 500 * 0.3486784401[/tex]

[tex]A(11) = 174.33922005[/tex]

Approximate to 2 dp

[tex]A(11) = 174.34[/tex]

ACCESS MORE