Answer:
[tex]A(n) = 500 * (\frac{9}{10})^{n-1[/tex]
[tex]A(11) = 174.34[/tex]
Step-by-step explanation:
Given
[tex]f(n) = 500[/tex]
[tex]g(n) = (\frac{9}{10})^{n-1[/tex]
Represent the combination of f(n) and g(n) with A(n)
So, we have:
[tex]A(n) = f(n) * g(n)[/tex]
This gives:
[tex]A(n) = 500 * (\frac{9}{10})^{n-1[/tex]
To calculate the 11th term, we make use of n = 11
[tex]A(11) = 500 * (\frac{9}{10})^{11-1[/tex]
[tex]A(11) = 500 * (\frac{9}{10})^{10[/tex]
This gives:
[tex]A(11) = 500 * (0.9)^{10}[/tex]
[tex]A(11) = 500 * 0.3486784401[/tex]
[tex]A(11) = 174.33922005[/tex]
Approximate to 2 dp
[tex]A(11) = 174.34[/tex]