Respuesta :

Answer:

[tex]V = 6746.30cm^3[/tex]

Step-by-step explanation:

Given

[tex]Surface\ Area = 1700cm^2[/tex]

Required

Determine the largest possible volume

Represent the dimension with:

[tex]Height = h[/tex]

[tex]Sides = x[/tex]

Surface Area with an open top is:

[tex]Surface\ Area = x^2+ 4hx[/tex]

Substitute 1700 for Surface Area

[tex]1700 = x^2+ 4hx[/tex]

Make h the subject

[tex]4hx = 1700 - x^2[/tex]

[tex]h = \frac{1700 - x^2}{4x}[/tex]

The volume (V) is calculated as:

[tex]V = x^2h[/tex]

Substitute value for h in [tex]V = x^2h[/tex]

[tex]V = x^2*\frac{1700 - x^2}{4x}[/tex]

[tex]V = x*\frac{1700 - x^2}{4}[/tex]

[tex]V = \frac{1700x - x^3}{4}[/tex]

[tex]V = \frac{1700x}{4} - \frac{x^3}{4}[/tex]

[tex]V = 425x - \frac{x^3}{4}[/tex]

[tex]V = 425x - \frac{1}{4}x^3[/tex]

Differentiate and equate to 0, afterwards

[tex]V' =425 - \frac{3}{4}x^2[/tex]

[tex]425 - \frac{3}{4}x^2 = 0[/tex]

[tex]\frac{3}{4}x^2 = 425[/tex]

Solve for [tex]x^2[/tex]

[tex]x^2 = 425 * \frac{4}{3}[/tex]

[tex]x^2 = 566.67[/tex]

Take the square root of both sides

[tex]x = \sqrt{566.67[/tex]

[tex]x = 23.80[/tex]

Substitute 23.80 for x in [tex]h = \frac{1700 - x^2}{4x}[/tex]

[tex]h = \frac{1700 - 23.80^2}{4*23.80}[/tex]

[tex]h = \frac{1133.56}{95.20}[/tex]

[tex]h = 11.91[/tex]

So, the largest possible volume is:

[tex]V = x^2h[/tex]

[tex]V = 23.80^2 * 11.91[/tex]

[tex]V = 6746.30cm^3[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico