Given ABCD, solve for X.
(30 + 5x)" (15+10x)"
A. 13
B. 11
C. 9
D. 7

The value of x of the parallelogram ABCD is 9.
A parallelogram is a quadrilateral whose opposite sides are parallel and equal in length. The opposite angles of a parallelogram are equal. The diagonals of a parallelogram bisect each other.
For the given situation,
Let ABCD be a parallelogram.
The angle of ∠A = (30+5x)° and ∠D = (15+10x)°
According to the property of parallelogram,
The adjacent angles of parallelogram are supplementary,
⇒ [tex]\angle A + \angle D=180[/tex]
⇒ [tex]\angle (30+5x) + \angle (15+10x)=180[/tex]
⇒ [tex]30+5x+15+10x=180[/tex]
⇒ [tex]15x+45=180[/tex]
⇒ [tex]15x=180-45[/tex]
⇒ [tex]15x=135[/tex]
⇒ [tex]x=\frac{135}{15}[/tex]
⇒ [tex]x=9[/tex]
Hence we can conclude that the value of x of the parallelogram ABCD is 9.
Learn more about parallelogram here
https://brainly.com/question/3216983
#SPJ2