Answer:
[tex] \purple {\bold {m\angle PTR=136\degree}} [/tex]
[tex] \orange {\bold {m\angle PQR=68\degree}}[/tex]
Step-by-step explanation:
PS and RS are tangents to the circle with center T at points P and R. (given)
TP and TR are radii of the given circle.
[tex] \therefore PS\perp TP\: \&\: RS\perp TR[/tex]
(radius is perpendicular to the tangent)
[tex] \therefore m\angle TPQ= m\angle TRS =90\degree [/tex]
In quadrilateral SPTR
[tex] m\angle TPQ+ m\angle TRS+m\angle PSR +m\angle PTR=360\degree [/tex]
[tex] 90\degree+ 90\degree+44\degree +m\angle PTR=360\degree [/tex]
[tex] 224\degree +m\angle PTR=360\degree [/tex]
[tex] m\angle PTR=360\degree - 224\degree[/tex]
[tex] \purple {\bold {m\angle PTR=136\degree}} [/tex]
By inscribed angle theorem:
[tex] m\angle PQR=\frac{1}{2} \times m\angle PTR[/tex]
[tex] m\angle PQR=\frac{1}{2} \times 136\degree[/tex]
[tex] \orange {\bold {m\angle PQR=68\degree}}[/tex]