Respuesta :

Answer:

[tex] \purple {\bold {m\angle PTR=136\degree}} [/tex]

[tex] \orange {\bold {m\angle PQR=68\degree}}[/tex]

Step-by-step explanation:

PS and RS are tangents to the circle with center T at points P and R. (given)

TP and TR are radii of the given circle.

[tex] \therefore PS\perp TP\: \&\: RS\perp TR[/tex]

(radius is perpendicular to the tangent)

[tex] \therefore m\angle TPQ= m\angle TRS =90\degree [/tex]

In quadrilateral SPTR

[tex] m\angle TPQ+ m\angle TRS+m\angle PSR +m\angle PTR=360\degree [/tex]

[tex] 90\degree+ 90\degree+44\degree +m\angle PTR=360\degree [/tex]

[tex] 224\degree +m\angle PTR=360\degree [/tex]

[tex] m\angle PTR=360\degree - 224\degree[/tex]

[tex] \purple {\bold {m\angle PTR=136\degree}} [/tex]

By inscribed angle theorem:

[tex] m\angle PQR=\frac{1}{2} \times m\angle PTR[/tex]

[tex] m\angle PQR=\frac{1}{2} \times 136\degree[/tex]

[tex] \orange {\bold {m\angle PQR=68\degree}}[/tex]

ACCESS MORE