Make r the subject - picture underneath

Answer:
The answer is r = 6a / (5m² - 1).
Step-by-step explanation:
The steps are :
[tex]m = \sqrt{ \frac{6a + r}{5r} } [/tex]
[tex] {m}^{2} = \frac{6a + r}{5r} [/tex]
[tex]5r {m}^{2} = 6a + r[/tex]
[tex]5r {m}^{2} - r = 6a[/tex]
[tex]r(5 {m}^{2} - 1) = 6a[/tex]
[tex]r = \frac{6a}{5 {m}^{2} - 1 } [/tex]
Answer:
r = [tex]\frac{6a}{5m^2-1}[/tex]
Step-by-step explanation:
Given
m = [tex]\sqrt{\frac{6a+r}{5r} }[/tex] ( square both sides )
m² = [tex]\frac{6a+r}{5r}[/tex] ( multiply both sides by 5r )
5rm² = 6a + r ( subtract r from both sides )
5rm² - r = 6a ← factor out r from each term on the left side
r(5m² - 1) = 6a ← divide both sides by (5m² - 1)
r = [tex]\frac{6a}{5m^2-1}[/tex]