The volume of the base of a rectangular prism is given by 12x ^ 3 + 23x ^ 2 + 46x + 45 The height of the rectangular prism is given by 4x + 5 Write an expression for the area of the base of the rectangular prism.

Respuesta :

Answer:

[tex]Base\ Area=3x^2 + 2x + 9[/tex]

Step-by-step explanation:

Given

[tex]Volume = 12x^3 + 23x^2 + 46x + 45[/tex]

[tex]Height = 4x + 5[/tex]

Required

Find the base area

Volume is calculated as:

[tex]Volume = Height * Base\ Area[/tex]

Make Area the subject

[tex]Base\ Area=\frac{Volume}{Height}[/tex]

Substitute values for Height and Volume

[tex]Base\ Area=\frac{12x^3 + 23x^2 + 46x + 45}{4x + 5}[/tex]

Expand the numerator

[tex]Base\ Area=\frac{12x^3 + 8x^2 + 15x^2 + 36x + 10x + 45}{4x + 5}[/tex]

Rearrange

[tex]Base\ Area=\frac{12x^3 + 8x^2 + 36x + 15x^2 + 10x + 45}{4x + 5}[/tex]

Factorize

[tex]Base\ Area=\frac{4x(3x^2 + 2x + 9) +5(3x^2 + 2x + 9)}{4x + 5}[/tex]

[tex]Base\ Area=\frac{(4x +5)(3x^2 + 2x + 9)}{4x + 5}[/tex]

Cancel out 4x + 5

[tex]Base\ Area=(3x^2 + 2x + 9)[/tex]

[tex]Base\ Area=3x^2 + 2x + 9[/tex]

ACCESS MORE