Answer:
[tex]Base\ Area=3x^2 + 2x + 9[/tex]
Step-by-step explanation:
Given
[tex]Volume = 12x^3 + 23x^2 + 46x + 45[/tex]
[tex]Height = 4x + 5[/tex]
Required
Find the base area
Volume is calculated as:
[tex]Volume = Height * Base\ Area[/tex]
Make Area the subject
[tex]Base\ Area=\frac{Volume}{Height}[/tex]
Substitute values for Height and Volume
[tex]Base\ Area=\frac{12x^3 + 23x^2 + 46x + 45}{4x + 5}[/tex]
Expand the numerator
[tex]Base\ Area=\frac{12x^3 + 8x^2 + 15x^2 + 36x + 10x + 45}{4x + 5}[/tex]
Rearrange
[tex]Base\ Area=\frac{12x^3 + 8x^2 + 36x + 15x^2 + 10x + 45}{4x + 5}[/tex]
Factorize
[tex]Base\ Area=\frac{4x(3x^2 + 2x + 9) +5(3x^2 + 2x + 9)}{4x + 5}[/tex]
[tex]Base\ Area=\frac{(4x +5)(3x^2 + 2x + 9)}{4x + 5}[/tex]
Cancel out 4x + 5
[tex]Base\ Area=(3x^2 + 2x + 9)[/tex]
[tex]Base\ Area=3x^2 + 2x + 9[/tex]