Respuesta :

Answer:

[tex]y = \frac{5}{3} (3^{x} )[/tex]

Step-by-step explanation:

In general, [tex]y = k(b^{x})[/tex]

Substitute x = 2, y = 15

(1)      [tex]15 = kb^{2}[/tex]

Substitute x = 1, y = 5

(2)      [tex]5 = kb^{1} = kb[/tex]

Divide equation (1) by equation (2)

[tex]\frac{15 = kb^{2} }{5= kb }[/tex]

3 = b

Now substitute b = 3 in equation (2) to find k

5 = k(3)

[tex]k = \frac{5}{3}[/tex]

Since we know the values for k and b, we now have the exponential function that passes thru (1, 5) and (2, 15)

[tex]y = \frac{5}{3} (3^{x} )[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico