Answer:
[tex]t= 7.67[/tex]
[tex]t= 10.13s[/tex]
Step-by-step explanation:
Solving (a):
[tex]H=-16t^2+122t+5[/tex]
Required: Time to hit the ground
This means that H = 0
So, we have:
[tex]0=-16t^2+122t+5[/tex]
Rewrite as:
[tex]16t^2-122t-5=0[/tex]
Solve for t using:
[tex]t= \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]t= \frac{122 \± \sqrt{(-122)^2 - 4*16*-5}}{2*16}[/tex]
[tex]t= \frac{122 \± \sqrt{15204}}{2*16}[/tex]
[tex]t= \frac{122 \± 123.3}{32}[/tex]
Split:
[tex]t= \frac{122 + 123.3}{32}[/tex] or [tex]t= \frac{122 - 123.3}{32}[/tex]
[tex]t= \frac{245.3}{32}[/tex] or [tex]t= \frac{-1.3}{32}[/tex]
[tex]t= 7.67[/tex] or [tex]t= -0.0406[/tex]
Time can not be negative. so: [tex]t= 7.67[/tex]
Solving (b):
[tex]h=-16t^2+162t+0.2[/tex]
Required: Time to hit the ground
This means that h = 0
[tex]0=-16t^2+162t+0.2[/tex]
Rewrite as:
[tex]16t^2-162t-0.2= 0[/tex]
Solve for t using:
[tex]t= \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]t= \frac{162 \± \sqrt{(-162)^2 - 4*16*-0.2}}{2*16}[/tex]
[tex]t= \frac{162 \± \sqrt{26256.8}}{32}[/tex]
[tex]t= \frac{162 \± 162.04}{32}[/tex]
[tex]t= \frac{162 + 162.04}{32}[/tex] or [tex]t= \frac{162 - 162.04}{32}[/tex]
[tex]t= \frac{324.04}{32}[/tex] or [tex]t= \frac{-0.04}{32}[/tex]
Time can not be negative. So:
[tex]t= \frac{324.04}{32}[/tex]
[tex]t= 10.13s[/tex]