Answer:
Step-by-step explanation:
sin(D) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
= [tex]\frac{7}{14}[/tex]
= [tex]\frac{1}{2}[/tex]
= 0.5
cos(D) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
= [tex]\frac{12.124}{14}[/tex]
= 0.866
tanD = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
= [tex]\frac{7}{12.124}[/tex]
= 0.577
Since, sinE = cosD
Therefore, sinE = 0.866
Since, cosE = sinD
Therefore, cosE = 0.5
Since, tanE = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
= [tex]\frac{12.124}{7}[/tex]
= 1.732