A pipe is to be cut up such that the second piece is 3 inches shorter than the first and the third piece is
four inches more than the first. How long is each piece if the pipe is 84 inches long?

Respuesta :

Answer:

[tex]F = 27\frac{2}{3}[/tex]

[tex]S = 24\frac{2}{3}[/tex]

[tex]T = 31\frac{2}{3}[/tex]

Step-by-step explanation:

Represent the first piece with F, the second with S and the third with T.

So:

[tex]S = F - 3[/tex]

[tex]T =4+ F[/tex]

[tex]S + T + F = 84[/tex]

Required

Find the length of each piece

Substitute [tex]S = F - 3[/tex] and [tex]T =4+ F[/tex] in [tex]S + T + F = 84[/tex]

[tex]F - 3 + 4 + F + F = 84[/tex]

Collect like terms

[tex]3F = 84 + 3 - 4[/tex]

[tex]3F = 83[/tex]

Divide through by 3

[tex]F = \frac{83}{3}[/tex]

[tex]F = 27\frac{2}{3}[/tex]

Substitute [tex]F = 27\frac{2}{3}[/tex] in [tex]S = F - 3[/tex] and [tex]T =4+ F[/tex]

[tex]S = F - 3[/tex]

[tex]S = 27\frac{2}{3} - 3[/tex]

[tex]S = 24\frac{2}{3}[/tex]

[tex]T =4+ F[/tex]

[tex]T = 4 + 27\frac{2}{3}[/tex]

[tex]T = 31\frac{2}{3}[/tex]

ACCESS MORE