Answer:
The 96% confidence interval estimate for the mean daily number of minutes that BYU students spend on their phones in fall 2019 is between 306.65 minutes and 317.35 minutes.
Step-by-step explanation:
Confidence interval normal
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.96}{2} = 0.02[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.02 = 0.98[/tex], so Z = 2.054.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.054\frac{54}{\sqrt{430}} = 5.35[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 312 - 5.35 = 306.65 minutes
The upper end of the interval is the sample mean added to M. So it is 312 + 5.35 = 317.35 minutes
The 96% confidence interval estimate for the mean daily number of minutes that BYU students spend on their phones in fall 2019 is between 306.65 minutes and 317.35 minutes.