Solution :
Partition coefficient Kd
[tex]$=\frac{\frac{\text{mass of caffeine in } CH_2Cl_2}{\text{volume of } CH_2Cl_2}}{\frac{\text{mass of caffeine in water}}{\text{volume of water}}}$[/tex]
= 9.0
A). 1 x 200 mL extraction :
Let m be the mass of caffeine in the water
Mass of caffeine in [tex]$CH_2Cl_2$[/tex] = 100 - m
[tex]$\frac{\frac{100-m}{200}}{\frac{m}{200}} = 9.0$[/tex]
[tex]$=\frac{100-m}{m} = 9.0$[/tex]
[tex]$= 10 m = 100$[/tex]
m = 10
Mass remaining in coffee = m = 10 mg
B). 2 x 100 mL extraction :
First extraction :
Let [tex]$m_1$[/tex] be the mass of caffeine in the water
Mass of caffeine in [tex]$CH_2Cl_2$[/tex] = [tex]$100-m_1$[/tex]
[tex]$\frac{\frac{100-m_1}{100}}{\frac{m_1}{200}} = 9.0$[/tex]
[tex]$=\frac{100-m_1}{m_1} = 4.5$[/tex]
[tex]$ 5.5 \ m_1 = 100$[/tex]
[tex]$m_1$[/tex] = 18.18
Mass remaining in coffee = [tex]$m_1$[/tex] = 18.18 mg
Second Extraction :
Let [tex]$m_2$[/tex] be the mass of caffeine in the water
Mass of caffeine in [tex]$CH_2Cl_2$[/tex] = [tex]$18.18-m_2$[/tex]
[tex]$\frac{\frac{18.18-m_2}{100}}{\frac{m_2}{200}} = 9.0$[/tex]
[tex]$=\frac{18.18-m_2}{m_2} = 4.5$[/tex]
[tex]$ 5.5 \ m_2 = 18.18$[/tex]
[tex]$m_2$[/tex] = 3.3
Mass remaining in coffee = [tex]$m_2$[/tex] = 3.3 mg