Given :
Number of methods, k = 3
Number of the observations, n = 30
Degrees of freedom Treatment = k - 1
= 3 - 1 = 2
Degrees of freedom for error = n - k
= 30 - 3 = 27
[tex]$SSTR = 4560, \ SST = 10800$[/tex]
[tex]$SSE = SST - SSTR$[/tex]
= 10800 - 4560
= 6240
[tex]$SSE_{treatment} = MS_{treatment } \times DF_{treatment}$[/tex]
[tex]$MS_{treatment} = \frac{4560}{2}=2280$[/tex]
[tex]$MS_{error}=\frac{SSE_{error}}{DF_{error}}$[/tex]
[tex]$=\frac{6240}{27}=231.1$[/tex]
[tex]$F=\frac{MS_{treatment}}{MS_{error}}$[/tex]
[tex]$=\frac{2280}{231.1}=9.865$[/tex]
Source variation Sum of square Degrees of freedom Mean square F
Treatment 4560 2 2280 9.8653
Error 6240 27 231.11111111
Total 10800
The critical value of F for the 0.05 sig level and df (227) is 3.354
Since the test stat > critical value of F, so we reject null hypothesis and state that there is a significant difference in the means of the three assembly methods.