Respuesta :
Answer:
[tex]P(x<810)=0.5[/tex]
[tex]P(x<800) = 0[/tex]
[tex]P(x>808.40) = 0.58[/tex]
[tex]P(x\le805.40\ or\ x\ge 808.40) = 0.85[/tex]
Step-by-step explanation:
Given:
[tex]F(x) = \left\{\begin{array}{ll}{0} &; {x<800^{\circ} \mathrm{C}} \\ {0.05 x-40} &; {800^{\circ} \mathrm{C} \leq x<820^{\circ} \mathrm{C}} \\ {1} &; {x>820^{\circ} \mathrm{C}}\end{array}[/tex]
Solving (a): P(x < 810)
To solve this, we make use of:
[tex]P(x<810) = F(x) = 0.05x - 40[/tex]
Because
[tex]800^\circ C \le 810 \le 820^\circ C[/tex]
So:
[tex]F(x) = 0.05 * 810 -40[/tex]
[tex]F(x) = 40.5 -40[/tex]
[tex]F(x) = 0.5[/tex]
Hence:
[tex]P(x<810)=0.5[/tex]
Solving (b): P(x < 800)
To solve this, we make use of:
[tex]P(x<800) = F(x) = x[/tex]
Because:
[tex]x < 800^\circ C[/tex]
So:
[tex]P(x<800) = 0[/tex]
Solving (c): P(x > 808.40)
Here, we make use of complement rule:
[tex]P(x>808.40) = 1 - P(x \le 808.40)[/tex]
Where:
[tex]P(x\le808.40) = 0.05x - 40[/tex]
[tex]P(x\le808.40) = 0.05*808.40 - 40[/tex]
[tex]P(x\le808.40) = 0.42[/tex]
So:
[tex]P(x>808.40) = 1 - 0.42[/tex]
[tex]P(x>808.40) = 0.58[/tex]
Solving (d) The probability that the temperature lies outside 805.60 and 808.40
First, we calculate the probability that it lies within.
This is represented as:
[tex]P(805.40 < x < 808.40)[/tex]
This is calculated using:
[tex]P(805.40 < x < 808.40) = F(808.40) - F(805.40)[/tex]
[tex]P(805.40 < x < 808.40) = 0.05*808.40-40 - (0.05*805.40-40)[/tex]
[tex]P(805.40 < x < 808.40) = 0.42 - (0.27)[/tex]
[tex]P(805.40 < x < 808.40) = 0.42 - 0.27[/tex]
[tex]P(805.40 < x < 808.40) = 0.15[/tex]
Using complement rule, the required probability is:
[tex]P(x\le805.40\ or\ x\ge 808.40) = 1 - 0.15[/tex]
[tex]P(x\le805.40\ or\ x\ge 808.40) = 0.85[/tex]