Respuesta :
Answer:
[tex](a)[/tex] [tex]Denominator= (x - 10)(x+5)(x-4)[/tex]
[tex](b)[/tex] [tex]M = \frac{(7x - 5)(x-4)}{(x+5)(x - 10)(x-4)}[/tex]
[tex](c)[/tex] [tex]N = \frac{(3x - 8)(x + 5)}{(x-4)(x-10)(x + 5)}[/tex]
[tex](d)[/tex] [tex]M + N = \frac{10x^2-26x -20}{(x+5)(x - 10)(x-4)}[/tex]
Step-by-step explanation:
Given
[tex]M = \frac{7x - 5}{x^2 -5x - 50}[/tex]
[tex]N = \frac{3x - 8}{x^2 -14x+ 40}[/tex]
Solving (a): A common denominator of M and N.
To do this, we simply get the LCM of both denominators
[tex]M = x^2 - 5x - 50[/tex]
[tex]N = x^2 - 14x + 40[/tex]
Factorize both:
[tex]M = (x - 10)(x + 5)[/tex]
[tex]N = (x- 10)(x - 4)[/tex]
The LCM is
[tex]LCM= (x - 10)(x+5)(x-4)[/tex]
Hence, the common denominator is:
[tex]Denominator= (x - 10)(x+5)(x-4)[/tex]
Solving (b): Rewrite M
[tex]M = \frac{7x - 5}{x^2 -5x - 50}[/tex]
Factor the denominator:
[tex]M = \frac{7x - 5}{(x+5)(x - 10)}[/tex]
The LCM calculated in (a) above is:
[tex]LCM= (x - 10)(x+5)(x-4)[/tex]
So, we have to multiply the numerator and denominator of M by (x - 4)
The expression becomes:
[tex]M = \frac{7x - 5}{(x+5)(x - 10)} * \frac{x - 4}{x-4}[/tex]
[tex]M = \frac{(7x - 5)(x-4)}{(x+5)(x - 10)(x-4)}[/tex]
Solving (c): Rewrite N
[tex]N = \frac{3x - 8}{x^2 -14x+ 40}[/tex]
Factor the denominator:
[tex]N = \frac{3x - 8}{(x-4)(x-10)}[/tex]
The LCM calculated in (a) above is:
[tex]LCM= (x - 10)(x+5)(x-4)[/tex]
So, we have to multiply the numerator and denominator of N by (x + 5)
The expression becomes:
[tex]N = \frac{3x - 8}{(x-4)(x-10)} * \frac{x + 5}{x + 5}[/tex]
[tex]N = \frac{(3x - 8)(x + 5)}{(x-4)(x-10)(x + 5)}[/tex]
(d) Solve M + N
[tex]M + N = \frac{(7x - 5)(x-4)}{(x+5)(x - 10)(x-4)} + \frac{(3x - 8)(x + 5)}{(x-4)(x-10)(x + 5)}[/tex]
Take LCM
[tex]M + N = \frac{(7x - 5)(x-4) + (3x - 8)(x + 5)}{(x+5)(x - 10)(x-4)}[/tex]
Open brackets
[tex]M + N = \frac{7x^2 - 28x - 5x + 20 + 3x^2 + 15x - 8x - 40}{(x+5)(x - 10)(x-4)}[/tex]
Collect Like Terms
[tex]M + N = \frac{7x^2 + 3x^2- 28x - 5x + 15x - 8x + 20 - 40}{(x+5)(x - 10)(x-4)}[/tex]
[tex]M + N = \frac{10x^2-26x -20}{(x+5)(x - 10)(x-4)}[/tex]