Answer:
PR = 6.93 units
PQ = 13.86 units
Step-by-step explanation:
From ΔPQR,
m∠Q = 30°
QR = 12
By applying tangent rule for the given angle in the triangle,
tan(30°) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
tan(30°) = [tex]\frac{PR}{QR}[/tex]
[tex]\frac{1}{\sqrt{3}}=\frac{PR}{12}[/tex]
PR = [tex]\frac{12}{\sqrt{3} }[/tex]
PR = 4√3 ≈ 6.93
Now we apply cosine rule,
cos(30°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
[tex]\frac{\sqrt{3} }{2}=\frac{QR}{PQ}[/tex]
[tex]\frac{\sqrt{3} }{2}=\frac{12}{PQ}[/tex]
PQ = [tex]\frac{24}{\sqrt{3} }[/tex]
PQ = 8√3 ≈ 13.86