Respuesta :

Answer:

PR = 6.93 units

PQ = 13.86 units

Step-by-step explanation:

From ΔPQR,

m∠Q = 30°

QR = 12

By applying tangent rule for the given angle in the triangle,

tan(30°) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

tan(30°) = [tex]\frac{PR}{QR}[/tex]

[tex]\frac{1}{\sqrt{3}}=\frac{PR}{12}[/tex]

PR = [tex]\frac{12}{\sqrt{3} }[/tex]

PR = 4√3 ≈ 6.93

Now we apply cosine rule,

cos(30°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{QR}{PQ}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{12}{PQ}[/tex]

PQ = [tex]\frac{24}{\sqrt{3} }[/tex]

PQ = 8√3 ≈ 13.86