Respuesta :

Given:

The equation is

[tex]\log_3625=x[/tex]

To find:

The value of x.

Solution:

We have,

[tex]\log_3625=x[/tex]

It can be written as

[tex]\log_3(5)^4=x[/tex]

[tex]4\log_3(5)=x[/tex]              [tex][\because \log x^n=n\log x][/tex]

[tex]4\dfrac{\log (5)}{\log (3)}=x[/tex]               [tex][\because \log_ab=\dfrac{\log_xb}{\log_xa}][/tex]

[tex]4\times \dfrac{0.69897}{0.47712}=x[/tex]

[tex]x\approx 5.8599[/tex]

Therefore, the value of x is about 5.8599.