Given:
Length of a rectangle = (2x+3) units
Width of the rectangle = (x+6) units
To find:
The perimeter and the area of the rectangle.
Solution:
We know that, the perimeter of the rectangle is
[tex]Perimeter=2(Length+Width)[/tex]
[tex]Perimeter=2((2x+3)+(x+6))[/tex]
[tex]Perimeter=2(3x+9)[/tex]
[tex]Perimeter=6x+18[/tex]
The area of rectangle is
[tex]Area=Length\times width[/tex]
[tex]Area=(2x+3)\times (x+6)[/tex]
[tex]Area=2x^2+12x+3x+18[/tex]
[tex]Area=2x^2+15x+18[/tex]
Therefore, [tex]Perimeter=6x+18[/tex] and [tex]Area=2x^2+15x+18[/tex].