What is the length of the hypotenuse of the triangle when x = 9?
7x +41
5x
The length of the hypotenuse is about
(Round to the nearest tenth as needed.)

I NEED THIS ASAP

Respuesta :

Answer:

[tex]H = 53.30[/tex]

Step-by-step explanation:

Given

[tex]Side\ 1 = 7x + 41[/tex]

[tex]Side\ 2 = 5x[/tex]

Required

Determine side x

The hypotenuse (H) is calculated using:

[tex]H^2 = Side\ 1^2 + Side\ 2^2[/tex]

[tex]H^2 = (7x + 41)^2 + (5x)^2[/tex]

Substitute 9 for x:

[tex]H^2 = (7*9 + 41)^2 + (5*9)^2[/tex]

[tex]H^2 = 10816 + 2025[/tex]

[tex]H^2 = 12841[/tex]

So:

[tex]H = \sqrt {2841[/tex]

[tex]H = 53.30[/tex]