Explanation:
Given that,
Vector a = 4i+3j
Vector b = -13i+7j
We need to find the magnitude and direction of (a+b). So,
(a+b) = (4i+3j) + (-13i+7j)
= (4i-13i)+(3j+7j)
= -9i+10j
Magnitude of (a+b).
[tex]|a+b|=\sqrt{(-9)^2+10^2} \\\\=13.45[/tex]
Direction of (a+b),
[tex]\tan\theta=\dfrac{10}{-9}\\\\\theta=\tan^{-1}(\dfrac{-10}{9})\\\\\theta=-48.01^{\circ}[/tex]
Hence, this is the required solution.